
/_j - _._:,_

Using Consistent Subcuts
for Detecting Stable Properties* _-

Keith Marzullo
Laura Sabel

TR 92-1277

(replaces TR 91-1205)
April 1992

J_

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under NASA Ames grant number NAG 2-593 and by grants from IBM and
Siemens. The views, opinions and findings contained in this report are those of the
authors and should not be construed as an official Department of Defense position,
policy or decision.

Using Consistent Subcuts for Detecting Stable

Properties*

Keith Marzullo Laura Sabel

Cornell University

Department of Computer Science

23 March 1992

Abstract

We present a general protocol for detecting whether a property
holds in a distributed system, where the property is a member of a

subclass of stable properties we call the locally stable properties. Our

protocol is based on a decentralized method for constructing a maximal
subset of the local states that are mutually consistent, which in turn is

based on a weakened version pf vector time stamps. The structure of

our protocol lends itself to refinement, and we demonstrate its utility

by deriving some specialized property-detection protocols, including

two previously-known protocols that are known to be efficient.

1 Introduction

It is conceptually simple to determine whether the global state of a dis-

tributed system satisfies a stable property; that is, a property • that satis-

fies • =_ O_. One can have a process use a snapshot algorithm such as the

one given in [CL85] to collect the relevant local and channel states and then

test to see if the condition holds ove[_the collected state. This technique can

"This work was supported by the Defense Advanced Research Projects Agency (DoD)

under NASA Ames gFant number NAG 2-593, and by grants from IBM and Siemens. The
views, opinions, and findings contained in this report are those of the authors and should
not be construed as an official Department of Defense position, policy, or decision.

be used to detect any stable property. However, for many stable properties

of interest, such as deadlock, termination, and lack of a token, there exist

specialized protocols (for example, [Mis83,Mat87,BT84,CMtt83]) that are

more efficient than a straightforward application of [CL85]. As well as being

more efficient, many of these specialized protocols are very elegant and their

relation to snapshots is not apparent.

It would be useful if one could derive such special-purpose protocols

by refinement of a general snapshot protocol. Unfortunately, the protocol

of [CL85] was not developed with refinement in mind, and we have not

found it conducive to such refinement. In this paper, we present a different

protocol for detecting stable properties that has proven to be more conducive

to refinement.

A naive general detection protocol is as follows: every time a process

executes an event, it appends its current state to a queue maintained in

local memory. A separate process po periodically retrieves these queues of

local histories and extracts from them the latest global state. Process P0 then

tests to see if the property holds in this global state. Unfortunately, this

protocol is impractical since it has a large execution overhead and requires

unbounded local memory. This can be fixed (at a cost of generality) by

having each process record only its current state at appropriate times and

by having po consider some subset of these local states that could be part

of a sensible global state of the system. Not all stable properties can be

detected this way, but it turns out that most stable properties that have

been discussed in the literature can.

In this paper, we present a method to detect a subclass of stable prop-

erties. The method can be easily expressed as a decentralized protocol and

can be customized for different properties in order to yield efficient special-

purpose protocols. We demonstrate its utility by using it to derive such

protocols including two previously-known protocols that are known to be

efficient.

2 Definitions

2.1 System Model

We consider an asynchronous distributed system consisting of a set of n

nonfaulty processes P - {pl, P2,..., P,_}. Between any two processes Pi and

pj there exist two unidirectional nonfaulty FIFO channels: C,,j from p_ to p3

and Cjd from pj to p_. These channels have unbounded delivery time, and

processes communicate only by sending and receiving messages over these

channels.

Processes execute events, which are partitioned into send events, receive

events, and local events. We will denote the tth event executed by process

t and the resulting local state a_. Thus, the execution of process pip, as e i

2 t reflects the1 a_ e i a_ ...). Note that the state aican be denoted (a ° e i

I through t When the ordinality of an event or stateexecution of events e i e i,

is not important, we will drop the superscript, e.g. the execution of event

el results in the local state _r;,

An arbitrary collection of local states may no_ constitute a sensible global

state: the local state of a process in the collection may reflect the receipt of

a message while no process' local state reflects the sending of that message.

Such sets of local states are called inconsistent; a sensible collection of local

states is called consistent. ([CL85])

A global state is defined to be a consistent set E = {al, a2,..., a,_} of the

processes' local states. We assume that channel states are captured in the

local states of the processes. There are many ways to do this, for example

by having each process maintain a history of all messages that it sends and

receives. In practice, one must ensure that the representation of the channel

states does not require an unbounded number of messages to be recorded.

A consistent cut is defined to be a set of events C = {el,e2,...,e_}

such that the set of states {al,a2,...,a,_) produced by C is a global state.

Thus, each consistent cut has a corresponding global state, and vice versa.

In this sense, global states and consistent cuts are equivalent notions. When

definingpropertiesof a distributedsystem,it isconvenientto referto states;

our protocol usesevents.For this reason,wedefineboth global statesand
consistentcutsfor usein differentcontexts.

A property is a predicate over the global state of the system. A stable

property is an invariant: once it becomes true, it continues to be true l. The

most commonly studied examples of stable properties in distributed systems

are deadlock of a subset of the processes, termination of a distributed com-

putation, and the lack of a token among the processes. There are, of course,

other stable properties of interest. For example, in a token-passing system

that can lose but not generate tokens, the predicate "there are no more than

two tokens in the system" is a stable property.

Let ail_ (read ai relative to _b) be the values of the subset of variables

of ai that are referenced in the formulation of property _. An event e[is

relevant to a property ¢ if a_-ll_ # a_l_; that is, if e_ changes p_'s local

state relative to _ by changing the value of a variable in the formulation

of _. For example, if _ is "a subset of the processes are deadlocked" then

the relevant events are those !;hat request a resource and those that grant

a resource, since _ is formulated in terms of resource requests and grants.

Note that local events, send events, and/or receive events can be relevant,

depending on how _ is formulated.

2.2 Vector Clocks

Our protocol is based on a variant of vector clocks [Mat89]. In the usual

definition of a vector clock V, each event ei has an n-component vector

V(ei)[1..n] associated with it. V(ei) is called the vector timestamp of e,.

The components of V(ei) are:

• Y(e_)[i] - t; that is, Y(e_)[i] is the number of events that Pi has

executed up to and including e_.

1Some authors define an invariant property to be one that is valid in all states of the

system.

• V(el)[j], j # i is the number of events pj has executed that causally
t

precede e i.

As an example, Figure 1 shows a space-time diagram of a two-process system

with the events labeled by vector clocks.

x:= 1 u:= 1 x :=2

,0? %,?(1 i)(3 (4 4) (_,a)

y := 2 y := 3

Figure 1: Execution with vector clocks.

A simple implementation of vector clocks has process Pi maintain an

n-element vector V_ of counters. Process pi increments lz][i] whenever it

executes an event el. If ei is a local event or a send event, then V(ei) =

V,-. If ei is a send event, then pi includes V, in the message. If e_ is the

corresponding receive event, then process pj sets Vk : k ¢ j : _[k] to the

maximum of the previous value of Vj[k] and the value of V,[k] in the message,

and V(ej) = Vj.

The following three relations hold between vector clocks and global

states, where ---, is the happened-before relation defined in [Lam78]. Equa-

tion 1 defines the happened-before relation in terms of vector clocks, Equa-

tion 2 defines when two events are consistent with each other (we call two

such events pairwise consistent), and Equation 3 defines when a set of local

states {al,...,an} produced by events {el, en} comprise a (consistent)

global state:

Vi,j: i ¢ j: V(ei)[i] < V(e))[i] - ei ---' ej (i)

5

> A

(V(ej)[j] >

Vi,j: V(ei)[i] >_V(ej)[i]

= e and ej are palrwise consistent (2)

-= {at,..., an} is a global state (3)

t and u are incon-Equation 2 can be derived by noting that two events e i ej

_ A 3e!' : t ,'sistent only if (without loss of generality) e_ ---* ej e i "--* e i _ e 3 ,

or in terms of vector clocks, Y(e_)[i] < Y(e'_)[i]. Equation 3 can be derived

from Equation 2 by noting that all events in a consistent cut are pairwise

consistent. Observe that E = (cq,...,a,_} is a global state if and only if

C = {el,...,e,_} is a consistent cut.

When vector clocks are used in actual protocols, not all events cause a

process' vector clock to be updated. For example, some causal broadcast

protocols are based on vector clocks that are updated only at send or broad-

cast events; other events (i.e., receive and local events) do not increment the

local component of V [Pet87,BSSg0]. For our purposes, only the execution

of relevant events update the local counter of a vector clock. This is because

the execution of a nonrelevant event does not change the state of the system

with respect to #.

If not all send events are relevant events, however, then Equations 2

t and u are relevant eventsand 3 need not hold. For example, suppose e i ej

t _ A 3e!' : t ,'that are pairwise inconsistent: e i ---, ei e i _ ez ---* ej. If no such

e i is a relevant event, then Y(el)[i] = V(e_')[i] and Y(e_)[j] > V(e_)[j]

t and " are pairwisewhich satisfies the left side of Equation 2 even though e, ej

inconsistent. On the other hand, a_l_ = t' ' anda i]_, and so the fact that e i

t1. tl

ej are pairwise inconsistent is irrelevant with respect to _, as long as e, and

e_ ate palrwise consistent.

We therefore define a type of vector clock for which a weaker version of

Equation 2 holds. Let the weak vector clock V¢ for _ be the vector clock

in which V,_(ei)[i] counts only the events relevant to # that Pi has executed

through e_. Therefore, the vector timestamp associated with several events

of pi may have the same value, but all such events result in the same local

state relative to _2 For example,in the caseof deadlockthe relevant

eventsaresendinga requestfor a resource, sending a grant of a resource,

and receiving a grant of a resource (see Section 5.2). If a process p requests

a resource and then sends an u_n_related message, then the send event does

not change the local state of p with respect to possible deadlock. So, the

send event is given the same weak vector timestamp as the resource request

event.
t*

t and e{ are equivalent with respect to _ writtenWe say that two events ei
t* t_

eit ,.,_ ei ' if eit and e i have the same weak vector timestamp. We say
t I

t and a i are equivalent with respect to _ writtenthat two local states a i
t ' ,a_ } andair ._ nit', if e it ,.,¢ ei . Similarly, two global states E = {a_',... t,

E' = {at1[,... , a_" } are equivalent with respect to @, written E _, E', if for
t{

all i, a it' "_ a i' . The following versions of Equations 1, 2, and 3 hold for

both vector clocks and weak vector clocks:

Vi,j: i # j: V_(el)[i] < V_(e_)[i]

(y_(4)[i] ___Y,(eD[i]) A

(V_(e?)[j] >_Va(el)[j])

Vi,j: V_(e_)[i] >_ V_(ej)[i]

lt) ¢= 3el', e_": (e,e~_ e_)A(ej~_ q):
[:_ u t

e, -_ej (4)

tl Ul t t t_. 3e,, ej : (e, --_ el) A(e_' ~, e_'):
t t _¢

e, and ej are pairwise consistent(5)

- 3 global state E':

E' ~_ {_l , _} (6)

Figure 2 shows weak vector clock values for the execution shown in Fig-

ure l, where we assume that the predicate of interest references x and y.

but not u nor any of the channel states. Note that although the events

x := 1 and y := 3 do not form a consistent cut, their timestamps satisfy

Equation 6 since there exist several cuts equivalent to this inconsistent cut

(all necessarily having (x = 1, y = 3)) and they are therefore consistent with

2Note that two events of different processes may have the same weak vector timestamp

as well.

7

respectto _.

Z :: i U:= I Z ::2

(1 0)(1 (1 1) (2,1)

(0,0V (0;1) _1,1)(1,1_1,1) (I,2)

y := 2 y := 3

Figure 2: Execution with weak vector clocks.

2.3 Locally Stable Properties

Our protocol will detect a subset of the stable properties that we call locally

stable properties. Informally, a stable property _ is locally stable if no pro-

cess involved in the property can change its state relative to _ an unbounded

number of times once _ holds. For example, suppose _ is "processes p, and

pj are deadlocked." The property _ is locally stable because once _ be-

comes true, neither pi nor pj, the processes involved in ¢, can execute any

event that could affect • (e.g., requesting or granting a resource). Hence,

o'il_ and ajl_ remain constant once • holds.

More formally, let {_ be the set of all global states that the system can

attain. For any Z E {_, define ZI_ to be the subset of Z that is referenced

in the formulation of _, and given a set of processes .4 define V'A to be

the subset of _] that consists of the states of the processes in A. We will

call _ locally stable if it is stable and if it satisfies the following condition:

consider any Z E _ that satisfies _, and let A be the set of processes p, such

that o'il_ does not change an unbounded number of times in any execution

starting at 2. Then, for all Z' £ G such that Z_[_ = ZAI(b, _ holds in Z'.

8

In other words,_ canbe determined from only the states of the processes

in A. Note that A can be empty, but only for trivial stable properties; if .4

is empty, then • can be determined without knowledge of the state of any

process or channel and must therefore be valid or not valid in all states. For

this reason, we will assume in this paper that A is nonempty.

The most commonly studied stable properties--deadlock, termination,

and lack of a token--are all locally stable. For example, if v is a deadlock

state, then ,4 includes the deadlocked processes, and so the presence of

deadlock can be determined by considering only the states of the processes

in A. An example of a stable property that is not locally stable is the

property "there are no more than k : k > 0 tokens" in a system where

tokens cannot be created but can be lost when passed. This is because if

_v is a state in which there are k tokens, then every process can execute a

relevant event an unbounded number of times (namely, it can pass tokens),

thereby changing its local state relative to • an unbounded number of times,

and so A is empty. The property, however, is not valid in all states of the

token passing system. 3

For most locally stable properties of interest, the processes in .4 cannot

change their local states relative to _at aLl once _ holds (i.e., the bound

on the number of future relevant events that they can execute is zero). In

this case, if our protocol presented below is initiated in a state in which

holds, it is guaranteed to detect _. For locally stable properties for which

the bound is not zero, however, the protocol may not detect • if initiated

in a state in which _ holds. Howev_er, the system will eventually reach a

state in which all processes in A will execute no further relevant events. If

the protocol is initiated in such a state, it is guaranteed to detect ¢. Thus,

3A need not be empty for a stable property to be not locally stable. For example,

suppose • is again "there are no more than k : k > 0 tokens" and the token passing

system consists of red and green processors. Furthermore, only red processors can lose

tokens and a green processor never passes a token to a red processor. In this system, ,4

is the set of green processors (green processors never execute a relevant event), yet the

validity of • depends on the states of both the green and red processors. Hence, q5 is not

locally stable.

9

thoughthe protocoleventuallydetects,I_in all cases,it detects_ "sooner"
whenthe boundis zero.

3 Protocol

3.1 Basic Protocol

We first assume that a process po will determine whether the global state of

the processes P = {Pl,...,P,_} satisfies a locally stable property 0. Later,

we wi]] change this protocol so that any number of processes in P may

concurrently assume the role of p0-

Our protocol is based on the notion of a consistent subcut--a set of

events whose timestamps satisfy Equation 6. (The state of a single process

is trivially a consistent subcut.) Informally, the protocol works as follows.

Whenever a process Pi executes a relevant event ei, Pi records in a buffer B,

its local state relative to _ and the vector time stamp V¢(ei) as Bi.a and

Bi.V, respectively. Process P0 periodically collects the values of the buffers

in any order, yielding a set 8 = {B1, B_ , B,_}. Once P0 has constructed

this set, Po determines if there exists a maximal consistent subcut of/3 such

that the states associated with the timestamps in the subcut satisfy q_. If

Po can find such a subcut, then q5 must currently hold. Note that Po need

not examine all consistent subcuts; if A' C_ A and _5 holds in E¢IA', then

will also hold in E_[A, so we need examine only the maximal consistent

subcuts of B. Of course, ,I_ may be of the form Vpi : _(pi), in which case

only a full consistent cut will satisfy ,I_.

Unfortunately, the number of ma.,dmal subcuts of a set of n weak vector

clocks is fl(2'_). Fortunately, it is not necessary for p0 to examine all of

these subcuts. Suppose the set of buffer values contains B, and Bj that are

inconsistent: Bi.V[i] < Bj.V[i]. These two states violate Equation 6, and

so both cannot be part of the same consistent subcut. However, Bi.V[i] <

Bj.V[i] implies that pi executed a relevant event between the time that

Bi.a was recorded and the time that Bj.a was recorded. Therefore, po need

10

• Eachprocessp_ 6 P records ai and V_(e_) in buffer B_ upon executing

a relevant event ei.

• Periodically, Po collects all of the buffers Bi and extracts from them

the latest subcut {ai :Vj : Bj.V[i] < Bi.Y[i]}.

• P0 detects 4 if 4 holds on the latest subcut.

Figure 3: Basic Protocol

not consider subcuts containing Bi.a: if the system is in a state such that

the processes involved in 4 will execute no more relevant events, then B,.a

cannot be necessary for the detection of 4 and so need not be considered.

Otherwise, the system will eventually reach such a state. If Bi.cr is involved

in determining 4, then Bi wilt be recorded such that B_.V[i] >_ B T.V[i]

for all j. Thus, given a set of buffered values B and the partial order

VBi, B 1 E B : t_i >" Bj de=f B,.V[j] > Bj.V[j], po need only find the greatest

elements of/3 with respect >-, which can be done in fi(n:) time. 4 Vv_ call

this subcut the latest subcut of/3. The latest subcut is clearly a mammal

subcut, since all states that are not part of the latest subcut are inconsistent

with some state in the latest subcut. This gives us the protocol shown in

Figure 3.

The soundness of this protocol is straightforward. We now argue that the

protocol is complete as well; that is, if 4 holds, then our protocol will detect

4. Let E be the first global state in which # holds. Since • is locally stable,

there is a nonempty set of processes A each of which executes a bounded

number of relevant events after E; these processes will not change their states

relative to 4 nor update their vector clocks an unbounded number of times

_The greatest elements of _ can be found by discarding any values B l such that

3i : B,.V[.j] > Bj.V[j], which can be done in O(n _) time using a straightforward algorithm.

And, if all values are incomparable then all the values are greatest elements of _. To
determine that they are all incomparable takes n _ comparisons, and so the problem is

fl(,_).

11

in any run startingat Z. Supposethat Po initiates the protocol in or after

(i.e., when @ holds). Because the processes in A can each execute only

a bounded number of relevant events alter E, and because message delivery

time is finite, there is some global state E' reachable in finite time from

after which the processes in A execute no more relevant events. Therefore P0

will eventually collect the states Z_IA. From the definition of >-, the state

of a process pi in A must be in any latest subcut constructed by p0 because

Pi wiLl execute no more relevant events. Since _ is stable, Z' satisfies q5 and

since @ is locally stable, q5 can be detected by examining E:.II_5. Hence. Po

will detect @.

3.2 Decentralization

In the above protocol, p0's role is to collect the local states, determine the

latest subcut, and check if _ holds in this subcut. We can decentralize these

steps by collecting the local states in a token.

Consider a token K that consists of n entries (D_,...,Dr) where each

entry Di = (Bi.a, Bi.V[i]); that is, Di will hold the state of pi relevant to

and the local component ofpi's vector clock when it generated B,.a. Assume

that there e:dsts a special value _L for Di indicating that the state is not in

the token; all of the Di in K are initially set to J_.

To determine whether _ holds, a process generates a token K, inserts

its state and vector clock value into K, and passes the token to any other

process. When a process pj receives a token K, it takes the following steps:

1. Set Dj to (Bj.a, Bj.V[j]).

2. For all non-J_ values of Dk that are not in the latest subcut, set Dk to

I.

, Determine whether the state values in K satisfy _. If so, then the

detection is made; otherwise, pj forwards the token to a process p_,

chosen fairly, that has D_ = .1_. If there is no such process, then pj

12

can either drop the token or, when pj computes a new value of Bj, pj

can restart at Step 1 with this token.

Note that when process pj executes rule 2, Bj must be part of the latest

subcut; if it were not, then there would exist a recorded value of Be in Dt

such that Bj.V[j] < Bt.V[j]. This implies that p_ knows of a relevant event

executed by pj that results in a state causally after the state recorded in Bj,

which violates the definition of Bj. Thus, only the earlier values D_ need be

tested with respect to B i. From above, the value Bk in Dk can be discarded

if Bk.V[k] < Bj.V[k]. The value Bk.V[k] is stored in Dk.V, so K carries

enough information for pj to make this test.

The resulting protocol is summarized in Figure 4. Note that we have

no a priori restriction on how many tokens there can be in the system at

any time or on the order in which the token is passed, other than that it is

passed in a fair manner. These decisions can be made when the protocol is

applied to a particular problem.

If this protocol is initiated in a state in which • holds and after which

no process executes a relevant event, then _ will be detected with no more

than n token passes. However, if processes do execute relevant events after

the protocol is initiated, then the initial detection may not be successful and

the protocol must be restarted. If the number of relevant events that can be

executed after _ holds is bounded by ,_, then detection can take up to an

additional)_n token passes. For large ,_, our protocol could perform worse

than a snapshot protocol. In practice, however, we do not expect)_ to be

large.

4 Termination Detection

We now instantiate the general protocol given above to obtain a protocol

that detects termination in a distributed system. There are many vari-

ations of this property; the earliest that we know of is due to Dijkstra

and Scholten [DS80]. The following definition is the same as that given

13

• Eachprocessp_ E P records a_ and V_(e_) in buffer B_ upon executing

a relevant event ei.

• When Pi wants to detect _, Pi generates a token (D1 := _l_,..., D,, :=

.l_), sets Di to (Bi.a, Bi.V[i]), and forwards the token to any other

process.

When pj receives a token:

• pj sets Dj to (B_.a, B_.V[j]).

• For each Dk :k ¢j, Dk _ ±,pj sets Dk :=-1- ifDk.V = B_.V[k] <

Bj.V[k].

• pj determines if # holds on the state values in the token.
forwards token to any pk such that Dk = t.

If not, pj

Figure 4: DecentraLized Protocol

in [MisS3].

ALl processes are either active or idle. Only active processes can send

messages. An active process may become idle at any time, and an idle

process can become active only upon receipt of a message. The system

is terminated when all processes in the system are idle and there are no

messages in transit.

The local state of a process relative to termination consists of whether

the process is active or idle and whether there is a message on an incoming

channel. Therefore, the events that are relevant to termination are sending

a message, receiving a message, becoming idle, and becoming active. Each

process will update its (weak) vector clock upon executing any of these

events. Note that for this problem, we do not need to keep track of the

contents of the messages exchanged between processes; only the number of

messages is important. To capture the channel states, we have each process

keep track of how many messages it has sent and received on each adjacent

14

channel.The combinedinformationof all of the processeswill thenyield

the numberof messagesin transit on eachchannel: if p_ has sent more

messages to pj than pj has received from p_, then there is at least one

message on channel Ci,j. In this way, we can represent the relevant channel

states without recording an unbounded number of messages.

We instantiate the general protocol given in Section 3.2 as follows.

Each process p_ maintains the foUowing local state variables:

• active_: Boolean = true if and only if p_ is active.

• sendi[1..n]: Integer array, sendi[j] = the number of messages that p_

has sent to pj. All are initially 0.

• recv,[1..n]: Integer array, reeve[j] = the number of messages that p_

has received from pj. All are initially 0.

When p_ sends a message to pj. sendi[j] is incremented. When p_ receives

a message from pj, recvi[j] is incremented. When p_ becomes active or idle_

active_ is set appropriately.

At some point, an idle process wilt start the detection protocol by cir-

culating a token as described in Section 3.2. The termination condition can

only be evaluated over a total global state (as opposed to a consistent proper

subset of the process states), so a positive determination can be made only

by the process p/ that is the last to add its state to the token.

Process p/ detects termination if and only if the following three condi-

tions hold:

1. The timestamps in the token form a consistent cut;

2. All processes are idle: Vi : active_ = false;

3. There are no messages in transit: Vi,j :senc_.[j] = recvj[i].

The following theorem and corollary show that item 1 is redundant. The

theorem assumes for simplicity that the buffered states are not collected in

a token; the corollary removes this assumption.

I5

Theorem 1 Let 8 = {Bi: i = 1,2,...n} be a a set of buffered state values

that were recorded in a system that does not collect states in a token D. If in

B, Vi,j: sendi[j] = recv/[i], then the global state defined by 8 is consistent:

¥i, j: Bi.V[i] >_ Bj.V[i].

Proof: Suppose by way of contradiction that item 3 holds over 8 but the

timestamps in Y form an inconsistent cut: 3i, j: Bi.V[i] < Bj.V[i]. Bj.V[i]

is advanced only when pj receives a message, and events local to pj affect

only Bj.V[j]. Therefore, in order for Bj.V[i] to advance beyond the recorded

Bi.V[i], there must have been a chain of messages between Pi and P1 between

the time that Bi was collected and the time that B3 was collected. This

implies that there is some k such that the recorded sendi[k] < recvk[i],

contradicting the assumption that item 3 holds.

[]

Corollary 2 Let 8 = {Bi : i = 1,2,... n} be a a set of buffered state values

that were collected in a token D. If in D,Vi,j: sendi[j] = recv_[i], then the

global .state defined by D is consistent: Vi.j: D,.V[i] >_ Dj.I[i].

Proof: None of the events executed in collecting the buffered states into a

token are relevant. Hence, collecting the states in this way has no effect

on their consistency with respect to termination. The buffered states will

therefore be consistent with respect to termination when items 2 and 3 hold.

O

Corollary 2 implies that the vector clocks need not be maintained. Fur-

thermore, these checks can be done incrementally. For example, we can

assign a total order to the processes and have the token passed along that

total order. When process Pk receives the token, it tests to see if

-,activek A (re: 1 < g < k: (sendk[l] = recvt[k]) A (sendt[k I = recvk[l])).

ff this condition does not hold, then Pk can drop the token. If the

condition holds and k = n, then termination is detected; otherwise, pk fills

in Dk and passes the token to Pk+_.

16

This yieldsthe protocolgivenin [Mat87]asthe channel counting pro-

tocol, which requires only n messages to detect termination once it holds,

and which can be further refined into a protocol that is space-efficient. This

is a good example of how our general protocol, which constructs consistent

(sub)cuts explicitly, can be used to derive a much simpler protocol that

constructs consistent cuts implicitly.

5 Deadlock Detection

5.1 k-out-of-m Deadlock

We now instantiate the general protocol given in Section 3 to obtain a proto-

col that detects k-out-of-m deadlock in a distributed system. This problem

was first formulated and solved in [BT84]. In this formulation, a process

can request k resources from a pool of m resources.

A process is either active or blocked, where an active process is one

that is not waiting for any other process. Active processes may issue k-

out-of-m requests in the following way. When an active process Pi requires

k processes to carry out some request, it sends request messages to each

of the rn processes that can perform this action. Process pi then becomes

blocked, and waits until the action requested is carried out by at least k of

the m processes. A process can not send any further requests while blocked,

but a process can receive request messages while blocked.

Only active processes can carry out a requested action. If a process P3

receives a request while active, it will either become blocked or carry out

pi's requested action within finite time. In the latter case, p_ will send a

grant message to pi. When Pi receives k grant messages, it becomes active

again. It then relinquishes the requests made to the rest of the processes to

which it sent request messages by sending them relinquish messages. We

assume that the recipient of a relinquish message acknowledges the message

and that the sender of a relinquish message waits for all acknowledgements

before sending another request message. By doing so, we guarantee that

17

p_ can discard any grant messages received after the first k are received.

The state of a process pi relative to k-out-of-m deadlock consists of

the number of grants needed for pi to become active and the current set

of processes that p/ is waiting for. We capture this state by having each

process keep track of the processes on which it is blocked and the number

of grant messages that it has sent and received on each adjacent channel.

We instantiate the general protocol given in Section 3.2 as follows. Each

process pi maintains the following local state variables:

• k_: Integer = the number of grant messages required for pz to become

active (initially 0).

• g_senc_[1..n]: Integer array, g_senc_[j] is the number of grant mes-

sages that pi has sent to pj (all are initially 0).

• g_recv_[1..n]: Integer array, g_recv_[j] is the number of grant messages

that p_ has received from pj (all are initially 0)-

, u:f/: Integer set. These are the processes that p_ is waiting for. When

p_ sends a request message to pj, wfi := wfi U {j}; when p_ receives

a grant message from pj or sends a relinquish message to pj, wf,. :=

w_- {j}.

Deadlock is determined by constructing and reducing the system waits-

for graph. This graph is constructed as follows:

• a waits-for edge is drawn from p_ to pj if w]] _ j A (g_sendj[i] =

g_recvi[j])). That is, Pi is waiting for a resource from p_ and no grant

message is in transit from pj to p_.

• the number of grants ni needed for pi to be unblocked is k, -IVj :

g_sendj[i]- g_reevi[j][. That is, _1 is the number of grants that pi is

waiting for less the number of grants in transit to pi.

Deadlock is tested by reducing this graph as follows: if an edge points from

pi to pj and pj is active, then the edge can be erased and _i can be reduced

13

by one;and if a processhas_ = 0, thenall of its outgoingedgescanbe
erased.The systemis deadlockedif andonly if thereareedgesthat cannot

be removedby followingthesetwo rules.
In this system,the relevanteventsof pi are those that change wf_, kl,

g_sen¢_ and g_recvi. Hence, the relevant events are requesting a resource,

sending a grant message, receiving a grant message and sending a re-

linquish message. We can now argue that k-out-of-rn deadlock is locally

stable: a deadlocked process can execute only a bounded number of relevant

events (namely, it can receive up to k_ - 1 grant messages), and any valid

global state that contains the local states of the deadlocked processes still

yields an irreducible waits-for graph.

The deadlock detection protocol is as follows. When a process pi wishes

to test for deadlock, pi generates a token, fills D_ with ((w_, g_send_, g_recv_,

ki), B_.V[i]), and forwards the token to some pj # p_. Upon receiving a to-

ken, a process pj sets D) to ((w)_, g_sendj,g_recvj, kj), Bj.V[j]) and discards

all values Dk that are inconsistent with Bj by setting Dk to .t_. p_ then

checks to see if deadlock holds on the remaining values by constructing the

waits-for graph and reducing it. If deadlock does not hold, then pj forwards

the token to any process Pk such that D_ = .L.

We can improve this protocol by choosing the process to which the token

is passed more carefully. Since we would like to detect deadlock as quickly

as possible, the forwarding process should choose a process that is likely to

add information leading to the detection of a deadlock. A reasonable choice

is a process pj such that Dj = I and such that P1 is in wf_ for some D_ # .1_.

The full protocol is presented in Figure 5. We assume that the process

pi that generates the token does so because it suspects that it is involved in

a deadlock; that is, wj_ is not empty.

5.2 RPC Deadlock Detection

1-out-of-1 deadlock is a special case of k-out-of-m deadlock that lends itself

to further optimization. This type of deadlock is called RPC deadlock be-

19

when p_ receives token (D1,..., Dr,):.

begin

Di.a :-= ki, g_send_, g_recvi, w_;

DiN := Bi.V[i];

for all Dj : Dj.V < Bi.V[j] : Dj := .I.;

if there e.xists pj : (Dj = ±) A (3pi : j E wf_)

then forward token to one of these pj

else begin

construct waits-for graph;

reduce waits-for graph;

if graph is not fully reduced then signal deadlock

else drop the token

end

end

Figure 5: Protocol for Detecting k-out-of-m Deadlock

cause it can occur in a remote procedure call system, where making a remote

procedure call is analogous to requesting a resource from a single processor.

The waits-for graph is constructed as for k-out-of-m deadlock, except that

k_ = [w_] and thus need not be represented in the wait-for graph. Fur-

thermore, relinquish messages are not needed and the waits-for graph is

reducible if and only if it does not contain a cycle.

We can instantiate our protocol for detecting RPC deadlock as follows.

As before, the relevant events are requesting aresource (here, making an

RPC request), sending a grant message (here, sending the reply to the RPC

request), and receiving a grant message. Any blocked process pi can decide

to detect deadlock by generating an empty token, inserting its buffered state

into Di, and passing the token to the (single) process in wfl. When pj receives

a token from pl, pj will verify that Pi waits-for Pi and will pass the token

on to the process blocking pj. A process detects deadlock when it receives

a token that contains a complete cycle. The resulting protocol is shown in

2O

RPCDeadlock(pj): cobegin

do forever when (w_ _ 0) and (waited too long)

create empty token K;

K.Dj := (g_sendi[w_], Bj.V[j]);

pass K to wfj

t] do forever when receive token K from p_

if K.Dj = I then

if w)_ _ 0 and K.D,.g_sendq[j] = g_recvj[i]
and VK.D_: K.D_ _ 0: K.Dk.V[k] >__Bj.V[k]

then

K.Dj := (g_send_[wfj], Bj.V[j]);

pass K to wfj

else skip/* drop token K ,/
else

if K.Di.g_sen4[j] = g_reevj[i] then detect deadlock

else skip/* drop token K ,/
coend

Figure 6: RPC Deadlock Protocol, Original

21

Figure6. Notethat if thewaits-forgraphcontainsad-cycle, then the token

"need be passed only d times.

This protocol can be further simplified by applying the following two

theorems.

Theorem 3 If (K.Di.g_sene_[j] = g_recvj[i]) then p_ has executed no rele-

vant event since setting K.Di.

Proof: Assume (K.Di.g_sen_[j] = g_recvj[i]). The last relevant event that

pi can have executed before setting K.Di was to send a request message to

pj. The first relevant event that p_ can have executed after setting K.D, is

the receipt of a grant message from pj. Since (K.D_.g_send_[j] = g_recv_[i]),

pj has sent no grant messages to p_ since pi sent the request to pj. Hence,

pi can have executed no relevant event since setting K.Di.

[]

Theorem 4 /f (K.Di.g_senc_[j] = g_recvj[i]) then no process that has set

its value in K has subsequently executed a relevant event.

Proof: Let t be the number of values Dk : Dk # _l_, and assume that

(g.D_.g_send_[j] = g_recvj[i]). We will use induction on g.

Base case (g = 1). Follows directly from Theorem 3.

Induction case (g > 1). By the induction hypothesis, no process prior to

pi had executed a relevant event when pi received K. No process prior to

pi can execute a relevant event until pi does, and by Theorem 3 pi has not

executed a relevant event since forwarding K to p3.

o

Theorem 4 implies

(g_send_[j] = g_recvi[i]) _ (Vk: Ok _ 0: D_.Y = B_.Y[k] >_ B_.V[k]).

Thus, the vector clocks can be omitted and the token need only carry the

identity of the process that initiated the test for deadlock. The resulting

protocol, shown in Figure 7, first appeared in [CMH83] specialized for m = i.

22

RPCDeadlock(pj):cobegin
do forever when (wfi _ 0) and (waitedtoo long)

send (g_sendj[wfj],j) to wfj
I] do forever when receive (s, k) from Pi

if k _ j then

if wfj # O and s = g_ree,j[i]

then send (g_sendj[wfj],k) to wfj
else

if _ = g_recvj[i] then detect deadlock
coend

Figure 7: RPC Deadlock Protocol, Refined

The protocol in Figure 6 can be easily generalized to detect detect and-

deadlock (m-out-of-m requests), since a cycle in the waits-for graph is equiv-

alent to deadlock in this case as well, The only change necessary is that when

pj passes the token, it must replicate the token and pass a copy to each pro-

cess in wfj. With and-deadlock, however, a process can execute a relevant

event while deadlocked--a deadlocked process can receive a proper subset

of the required grant messages, Thus, if the waits-for graph contains a d-

cycle, then even if tokens are generated by a deadlocked process and passed

along cycles, such tokens may be dropped up to n- d times before the dead-

lock is detected. However, the protocol in Figure 7 can be effectively run

in parallel by having pj send (g_sendj[u], k) to all the processes u E wfj in

which case a token passed along a cycle will not be dropped. The resulting

deadlock detection protocol is the one presented in [CMH83].

6 Conclusion

This paper defined a proper subclass of the stable properties which we denote

the locally stable properties. This subclass is interesting in that a process

that is "involved" in estabfishing the stable property is limited in what it

23

cando, and will eventuallyceasechangingits local state with respectto
the stableproperty. Hence, in order to detect a locally stable property, a

consistent cut need not be explicitly constructed--the relevant local states

will form a consistent subcut implicitly. This leaves only the problem of

detection.

In order to make this observation, we needed to define consistent cuts

with respect to a global state predicate, and slightly extend the notion of

vector clocks to accommodate our definition. We then gave a simple and

decentralized protocol that detects when a locally stable property occurs in

a distributed system. The protocol can be easily refined, which we illustrate

by refining it to a known protocol for termination detection, a new proto-

col for k-out-of-m deadlock detection, and known protocols for m-out-of-m

deadlock detection.

In the reductions to the two known protocols, the vector clocks proved

redundant. This was because the processes involved in _ could execute

no relevant events once they established the condition of interest, and the

detection algorithm also ensured that the channels carried no undefivered

relevant messages. In both cases, the receipt of a relevant message was the

only relevant event that a process involved in • could execute, and so an

empty channel between two processes implied pairwise consistency of the

recorded states of those two processes. This observation is similar to one of

the steps in the refinement of a termination protocol given in [CM86], yet

we have not been able to refine our protocol to their termination protocol.

The class of locally stable properties was defined in proving the protocol

correct. We would like to determine what kinds of properties are locally

stable. We know of two general classes: the locally stable properties of

distributed garbage detection, termination, and global deadlock can all be

expressed as detecting no token in a generalized token passing system, yet

deadlock of a subset of the processes does not seem to be so expressible. We

are interested in whether there are other classes of locally stable properties.

Not all interesting stable properties are locally stable, however. For

24

example,the property"the numberof tokensis lessthan k > 0" in a token

passing system that can lose but not regenerate tokens is stable but not

locally stable. We do not know if there are protocols that are more message-

efficient than snapshot protocols for detecting such properties.

Our work was motivated by trying to derive message-efficient special-

purpose detection protocols from a general detection protocol. We have only

been partially successful. Our protocol is most efficient when no process can

execute a relevant event after the condition of interest holds. Furthermore, in

our derivation of the m-out-of-m deadlock detection protocol in Section 5.2,

our protocol could generate O(a) extra messages. Hence, we would like to

better understand the notion of relevant events and weak vector clocks.

Acknowledgements We would like to thank Ozalp Babao_lu, Gil Neiger,

Fred Schneider, and Sam Toueg for their contributions to the ideas in this

paper. We would also like to thank Ken Birman, Bard Bloom, Navin Bud-

hiraja, Tushar Chandra, and Mark Wood for their valuable comments on

earlier drafts of this paper.

References

[BSSg0] K. Birman, A. Schiper, and P. Stephenson. Fast causal mul-

ticast. Technical Report TR-90-1105, Cornell University, April

1990. Submitted for publication.

[BT841 Gabriel Bracha and Sam Toueg. A distributed algorithm for gen-

eralized deadlock detection. In Proceedings of the Third Sym-

posium on Principles of Distributed Computing, pages 285-301.

ACM SIGPLAN/SIGOPS, August 1984.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: de-

termining global states of distributed systems..4 CM Transactions

on Computer Systems, 3(1):63-75, February 1985.

[CM86] K. Mani Chandy and Jayadev Misra. An example of stepwise

refinement of distributed programs: Quiescence detection. ACM

Transactions on Programming Languages and Systems, 8(3):326-

343, July 1986.

25

[CMH83]

[DS80]

[Lazn78]

[Mat87]

[Mat89]

[MisS3]

[Pet87]

K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed

deadlock detection. A CM Transactions on Computer Systems,

1(2):144-i56, May 1983.

Edsger W. Dijkstra and C.S. Scholten. Termination detection for

diffusing computations. In/ormation Processing Letters, 11(1):1-

4, 1980.

Leslie Lamport. Time, clocks, and the ordering of events in a

distributed system. Communications o/ the ACM, 21(7):558-565,

July 1978.

Friedemann Mattern. Algorithms for distributed termination de-

tection. Distributed Computing, 2(3):161-175, 1987.

Friedemann Mattern. Time and global states of distributed sys-

tems. In Michel Cosnard et. aJ., editor, Proceedings o/the Inter-

national Workshop on Parallel and Distributed Algorithms, pages

215-226. North-Holland, October 1989.

Jayadev Misra. Detecting termination of distributed computa-

tions using markers. In Proceedings of the Second Symposium on

Principles of Distributed Computing, pages 290-294. ACM SIG-

PLAN/SIGOPS, August 1983.

Larry L. Peterson. Preserving context information in an IPC ab-

straction. In Proceedings o/ the 6th Symposium on Reliability in

Distributed Software and Database Systems, pages 22-31, March

1987.

26

